
Generalized collective modes in liquid Cs near the melting point

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 3329

(http://iopscience.iop.org/0953-8984/9/16/005)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 08:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/16
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 3329–3341. Printed in the UK PII: S0953-8984(97)77404-6

Generalized collective modes in liquid Cs near the melting
point

T Bryk and Ya Chushak
Institute for Condensed Matter Physics, Ukrainian National Academy of Sciences, Svientsitsky
Street 1, Lviv 290011, Ukraine†, and Institut f̈ur Theoretische Physik, Technische Universität
Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria

Received 27 August 1996, in final form 7 November 1996

Abstract. The dynamical properties of liquid caesium near the melting point are investig-
ated within the generalized collective-modes approach in a Markovian approximation. The
generalized thermodynamic quantities and spectra of collective modes have been obtained for
the five-variables description of longitudinal fluctuations. As the basis variables, three conserved
and two nonconserved quantities have been used: the number density, longitudinal momentum,
and energy density; and the first time derivatives of the longitudinal momentum and the energy
density. All of the static and dynamic correlation functions were calculated directly from
molecular dynamics simulations for 500 particles over 165 000 time steps, avoiding any fitting
parameters. A comparison with the experimental data and results of previous molecular dynamics
simulations is made.

1. Introduction

The approach of generalized collective modes [1–3] for the investigation of time correlation
functions is a modern powerful method, which allows the self-consistent description of
dynamical properties of liquids and gases in the hydrodynamic limit as well as beyond
the region of small values of the wave-vectork and frequencyω. Within this approach
the time correlation functions are obtained as the weighted sums of partial terms, each
being associated with the relevant collective excitation as expressed via the eigenvector
and eigenvalue of a generalized operator of evolution. Some generalized collective modes
correspond in the hydrodynamic limit to the usual hydrodynamic ones. It was shown [3]
that for longitudinal fluctuations the three generalized collective excitations with the lowest
eigenvalues are equal in the hydrodynamic limit to the heat mode and two sound ones.
The other collective modes with higher eigenvalues have finite damping coefficients in the
hydrodynamic region and are called the kinetic modes. The number of generalized collective
modes is determined by the number of independent dynamical variables; their time evolution
may be obtained in computer experiments, and these variables form the basis for evaluation
of the relevant time correlation functions. In [4] the seven-variables approximation has been
suggested and in [5] the extension to a nine-variables description has been made. There has
also been the first attempt to apply the approach of generalized collective modes to binary
systems. For the investigation of the fast-sound phenomenon in a binary He–Ne mixture,
Westerhuijset al [6] proposed a kinetic model within the five-variables approximation. In
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[6] all elements of the kinetic matrix for finitek-values have been obtained using a procedure
involving fitting to experimental data and then extrapolating to the hydrodynamic region.

Despite its attractiveness, the collective-modes approach demands very long molecular
dynamics (MD) simulations or complicated fitting procedures [6]. Therefore, MD experi-
ments for multivariable approaches [3–5] were performed for simple model Lennard-
Jones systems. In our work we apply the approach described by Mryglodet al [4] to
the investigation of collective modes in metallic Cs above the melting point. At this
thermodynamic point the dynamic properties of liquid Cs have been widely investigated
experimentally [7] and numerically using MD simulation [8–10]. Therefore, it seems to
us to be a good subject on which to test the first calculations within the collective-modes
approach applied to a dense metallic system.

This report is organized as follows. In section 2 we give a short description of the
theoretical method, and the approximations which have to be made. Section 3 contains
all of the details of the MD simulations, and section 4 is devoted to the discussion of our
results in comparison with the experimental data and previous MD-simulation results [8].

2. The theoretical method

We consider a spatially homogeneous, isotropic system ofN identical classical particles of
massm in volumeV . We start from the definition of the square matrix of time correlation
functions F 0(k, t). Each element of this matrix is the correlation function of two basis
dynamical variables:

F 0
ij (k, t) = 〈Ai(k, 0)A∗j (k, t)〉. (1)

Here M microscopic dynamical variablesAi(k, t) form the basis set{Ai(k, t)} for the
definition of theM ×M square matrixF 0(k, t).

Within the Mori–Zwanzig formalism it is straightforward to write down the generalized
Langevin equation for the matrix of time correlation functionsF 0(k, t) [11, 3]:

∂

∂t
F 0(k, t)− iΩ(k)F 0(k, t)+

∫ ∞
0

M(k, τ )F 0(k, t − τ) dτ = 0 (2)

where iΩ(k) andM(k, τ ) are the frequency matrix and the matrix of the memory functions,
respectively. This matrix equation can be rewritten in terms of the Laplace transform:

[zI− iΩ(k)+ M̃(k, z)]F̃ 0(k, z) = F 0(k, 0) (3)

and using the Markovian approximation for the memory functionsM̃(k, z) ' M̃(k, 0) we
obtain the following equation:

[zI+ T(k)]F̃M(k, z) = F 0(k, t = 0) (4)

where

T(k) = −iΩ(k)+ M̃(k, 0) = F 0(k, 0)F̃ 0
−1
(k, 0). (5)

F̃M denotes Laplace-transformed matrix of time correlation functions in the Markovian
approximation andI is the identity matrix. The following properties of time correlation
functions in the Markovian approximation are very important from the point of view of
sum rules: ∫ ∞

0
FM(k, t) dt =

∫ ∞
0

F 0(k, t) dt (6)

FM(k, t = 0) = F 0(k, t = 0). (7)
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We may diagonalize theT(k)-matrix (5):
M∑
i=1

Tij (k)Xj,α = zα(k)Xi,α (8)

whereXj,α are the components of theα-eigenvector, andzα is the relevant eigenvalue.
Then equation (4) has the following solution in terms of eigenvectors and eigenvalues of
the matrixT(k):

F̃Mij (k, z) =
M∑
i=1

Gα
ij (k)

z + zα(k) (9)

where

Gα
ij (k) =

M∑
l=1

XiαX
−1
αl F

0
lj (k, 0) (10)

and in the time representation the solution has the form

FMij (k, t) =
M∑
α=1

Gα
ij (k) exp{−zα(k)t}. (11)

This means that each correlation functionFMij (k, t) can be expressed as a weighted sum
of M terms with the time evolution, which is connected with the effective collective mode
with eigenvaluezα(k).

Thus, the entire problem of the time correlation function calculation is divided into
three steps: (i) choice of the basis set of dynamical variables; (ii) MD simulations and
direct calculations of the static averagesF 0

ij (k, t = 0); and (iii) solution of equation (4) in
terms of eigenvectors of the matrixT(k) and calculation of all dynamic and thermodynamic
properties of the system investigated.

3. Generalized collective modes within the five-variables approach

3.1. The basis set of dynamical variables

We introduce the operators for the number densityn̂, momentumĵ and energyê in the
Fourier representation:

n̂(k, t) = 1√
N

N∑
i=1

exp(ik · ri (t)) (12)

ĵ(k, t) = 1√
N

N∑
i=1

mvi (t) exp(ik · ri (t)) (13)

ê(k, t) = 1√
N

N∑
i=1

ei(t) exp(ik · ri (t)) (14)

where

ei(t) = m(vi )2/2+ 1

2

N∑
i,j=1 (j 6=i)

8ij . (15)

ri , vi denote the positions and velocities of particles, and8ij (r) is the two-body potential.
The operators (12)–(14) form the set of hydrodynamic microscopic variables

{Ai(k, t)}hyd = {n̂(k, t), ĵ(k, t), ê(k, t)}. (16)
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In [3, 4] the first time derivatives of (13) and (14) have been added to the basis set of
hydrodynamic variables:

˙̂
j(k, t) = 1√

N

N∑
i=1

m(ai (t)+ ik · vi (t)vi (t)) exp(ik · ri (t)) (17)

˙̂e(k, t) = 1√
N

N∑
i=1

(ėi(t)+ ik · vi (t)ei(t)) exp(ik · ri (t)). (18)

In (17) ai (t) denotes the acceleration of theith particle. Further extension of the basis set
with higher time derivatives of (13) and (14) has been suggested in [4, 5].

In our work we choose for investigation of the longitudinal fluctuations a basis set of
five variables:

{Ai(k, t)} = {n̂(k, t), ĵL(k, t), ê(k, t), ˙̂j
L

(k, t), ˙̂e(k, t)} (19)

where ĵL(k, t) denotes the longitudinal component of the current operator. Taking into
account the relation

∂n̂(k, t)

∂t
= ik

m
ĵ(k, t) (20)

and properties of time correlation functions [3, 4] we can see that the 25 correlation functions
F 0
ij (k, t) of interest are just purely real or purely imaginary. For simplicity we denote the

absolute value ofF 0
ij (k, t = 0) in reduced units asfij . In the static limit the number of

different nonzero correlation functions is reduced to seven averages. In our case the 5× 5
Hermitian matrix of static correlation functionsF 0(k, t = 0) has the form

F 0(k) =


fnn 0 fne −ikf Ljj 0
0 f Ljj 0 0 −if L

j̇e

fne 0 fee −if L
j̇e

0

ikf Ljj 0 if L
j̇e

f L
j̇ j̇

0

0 if L
j̇e

0 0 fėė

 . (21)

Similarly, taking into account the properties of time correlation functions (see [3, 4]),
F̃ 0(k, z = 0) may be written as

F̃ 0(k) =


τnnfnn (i/k)fnn τnefne 0 fne
(i/k)fnn 0 (i/k)fne f Ljj 0
τnnfne (i/k)fne τeefee 0 fee

0 −f Ljj 0 0 if L
j̇e

−fne 0 −fee if L
j̇e

0

 (22)

where

τij (k) = 1

F 0
ij (k, 0)

∫ ∞
0
F 0
ij (k, t) dt (23)

are the hydrodynamic correlation times.
We have to emphasize that the theoretical approach described above does not contain

any fitting parameter. Just the Markovian approximation is made to obtain equation (4).
The applications of this method [4, 5] showed very reasonable results for the dynamical
properties of the model Lennard-Jones system.
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Figure 1. The pair distribution functiong(r) and the reduced potential8∗ = 8ij /kBT .

3.2. Molecular dynamics simulations

We performed MD simulations for liquid Cs with the mass densityn = 1832.1 kg m−3 at
the temperature 308 K using a system of 500 particles interacting through the oscillating
potential8ij (r) at the constant volumeV = L3. The effective two-body potential was
obtained from pseudopotential theory using a simple Ashcroft empty-core pseudopotential
[12] with the parameterrc = 2.72 au, and for the local-field correction the parametrization
of Ichimaru and Utsumi [13] was used. The potential was calculated in tabular form on
a grid with a mesh size of 0.04 Å. In order to take into account the Friedel oscillations,
the cut-off radiusrcut was chosen to be 18.12 Å, in the vicinity of the sixth node. This
kind of interatomic potential gives for the static and dynamic properties of liquid Cs a
good agreement with experimental data [8]. The reduced interatomic potential is shown in
figure 1.

The equations of motion were integrated by means of a fourth-order predictor–corrector
Gear algorithm with a time increment of1t = 8× 10−15 s. The initial configuration of
particles was the face-centred cubic lattice, and their initial velocities were randomly put
into a Maxwellian distribution. The melting of the initial configuration and the subsequent
thermalizing were performed in 13 500 time steps. The observation time in the equilibrium
state of the system was 1320 ps (165 000 time steps) except for the smallestk-value, where
it was enlarged to 4320 ps (540 000 time steps). The energy conservation for the whole
MD run was to within less than 0.02%, due to the small value of1t , the small grid size of
the tabulated potential, and the sophisticated integration method. Every sixth configuration
was taken into account in the computation of the static equilibrium averages. The time
correlation functions were calculated by shifting the time origins (1t0 = 61t) on the
grid of 512 points in steps of 31t . Additional averaging of the correlation functions was
performed over allNk possible vectorsk (with |k| = k) which are commensurate with
the reciprocal lattice of the MD box due to periodic boundary condition. We restricted the
k-region by imposing the upper bound 10kmin, wherekmin = 2π/L was the smallest possible

k-value of 0.160 29Å
−1

.
With the help of directly calculated static correlation functions we can obtain thek-
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Figure 2. Static correlation functions. (a) Density–density. Full line—the Fourier transform
of the pair correlation function; open circles—experimental data [7]; full circles—directly MD-
calculated values; asterisk atk = 0—the value from the isothermal compressibility [14]. (b) The
static correlator between complex conjugate basis variables (17). Boxes—directly MD-calculated
values; full line—the fourth moment of the dynamical structure factor divided byk2.

dependence of the generalized thermodynamic quantities using the expressions [3, 16]

h(k) = 1

kBT k
f L
j̇e
(k) (24)

CV (k) = 1

kBT 2
[fee(k)− f 2

ne(k)/fnn(k)] (25)

α(k)T = 1

kBT
[h(k)fnn(k)− fne(k)] (26)
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Figure 3. Generalized thermodynamic quantities for liquid Cs atT = 308 K: (a) the generalized
enthalpy per particle; (b) the generalized linear-expansion coefficient; (c) the generalized specific
heat at constant volume per particle; (d) the generalized ratio of specific heats. Asterisk atk = 0
in (b)–(d)—experimental values; that in (a)—the calculated value (28). Dotted lines—the spline
interpolation.

γ (k) = CP (k)

CV (k)
CP (k) = CV (k)+ kBT 2α2(k)/fnn(k) (27)

where kB denotes the Boltzmann constant,h(k) is the generalized enthalpy per particle,
α(k) is the generalized thermal linear-expansion coefficient, andCV andCP are generalized
specific heats at constant volume and constant pressure per particle, respectively.



3336 T Bryk and Ya Chushak

Figure 4. Inverse hydrodynamic correlation times as functions of the wave-vector: diamonds—
density–density; triangles—density–energy; boxes—energy–energy. Dotted lines—the spline
interpolation.

4. Results and discussion

We calculated the static structure factor (figure 2(a)) in two ways: (i) directly from
the definition as the equilibrium averagefnn; and (ii) via Fourier transformation of the
pair correlation function (figure 1). In both cases the values obtained give a good
agreement with the experimental data [7] and previous MD simulations [8, 9]. The value
S(k = 0) = 0.023 23, obtained from the isothermal compressibility [14], is also in good
agreement with the extrapolated theoretical valuesS(k). To check the reliability of the
calculated static averages we compared the relevantfii, i = jL, j̇L with the second(〈ω2〉(k))
and fourth moments(〈ω4〉(k)) of the coherent dynamical structure factor [15]. The values
f Ljj (k) within the numerical accuracy of 1% were equal to the square of the thermal velocity
kBT /m = 〈ω2〉/k2. The comparison of the directly calculatedf L

j̇ j̇
(k) and 〈ω4〉/k2, which

are shown in figure 2(b), seems to be very satisfactory. We would like to emphasize that
all matrix elements in (21) and (22) were calculated directly from MD simulation avoiding
any fitting parameters and numerical derivatives for time correlation functions.

In figures 3(a)–3(d) the generalized thermodynamic quantities (24)–(27) are shown. All

curves display nonmonotonic behaviour in the region∼1.35–1.45Å
−1

which corresponds
to the position of the main peak of the static structure factor. The asterisk atk = 0 for the
generalized enthalpy per particle (figure 3(a)) denotes the calculated value [16]:

h(k = 0) = ē + p/n

p = kBT n− 2πn2

3

∫ rcut

0
g(r)

∂8ij (r)

∂r
r3 dr

(28)

where ē is the average energy per particle, calculated during the MD run (ē/kBT =
−3.467 27), andp, g(r), and n are the pressure, the pair distribution function, and the
numerical density, respectively. The integral in (28) has been calculated without long-range
corrections. The upper limitrcut has been taken because the potential8ij (r) beyond the cut-
off radius was assumed to be equal to zero. In figures 3(b) and 3(c) asterisks atk = 0 denote
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Figure 5. The dispersion of the generalized collective modes. (a) The imaginary part of the
eigenvalues for propagating modes. Dotted line—linear dispersion with the experimental value of
the speed of sound [14]. (b) The real part of the eigenvalue of the sound-like mode. (c) Purely
real eigenvalues. Dotted line—the heat mode (30) with the experimental value ofDT [14].
(d) The peak position ofCL(k, ω). Triangles—experimental data [17]; full circles—calculated
values.

experimental values. For these generalized thermodynamic quantities we may extrapolate
theoretical curves well to the points that show experimental values:α = 28.92×10−5 K−1,
γ = 1.102, CV = 0.214 J g K−1 [14]. The specific heatCV has been determined also
via the temperature fluctuations [11] during the MD run. The valueCV = 0.225 J g K−1

obtained is in a reasonable agreement with the experimental data and the extrapolated value
of CV (k→ 0).

The k-dependences of the inverse hydrodynamic correlation times (23) in terms of the
time-scaleτσ = (m/kBT )1/2/kmin are presented in figure 4. The curves display behaviour
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Figure 6. Time correlation functions: density–density ((a), (b)) and energy–energy ((c), (d)),
for two values ofk. Open circles—MD-calculated time correlation functions; dotted lines—
Markovian approximations (11) within the three-variables basis (16); full lines—Markovian
approximations within the five-variables basis (19).

with a minimum in thek-region of the main peak of the static structure factor that is similar
to the results obtained in [4, 5] for a model Lennard-Jones liquid.

Within the five-variables approach we obtained five generalized collective modes. At
small k-values up to 2kmin there exist two propagating modes with complex conjugate
eigenvalues and three diffusive ones with purely real eigenvalueszα. This is in agreement
with the five-modes results for Lennard-Jones fluids [3, 4], where also just two propagating
modes in the region of small wave-vectors have been obtained. These propagating modes
display dispersion which is typical of the sound excitations, and in the hydrodynamic region
the dependence onk of the imaginary part becomes a linear function with a coefficient that
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Figure 6. (Continued)

has the meaning of the adiabatic speed of sound:

z±(k→ 0) = 0k2± iCk. (29)

In figure 5(a) the linear dispersion with the experimental value of the adiabatic speed of
sound [14] is shown. Our results give the linear coefficientC = 1180 m s−1—that is,∼20%
larger than the experimental value. The dispersions of the imaginary parts of the propagating
modes are shown in figure 5(a). The nonhydrodynamic propagating modes appear for
k > 2kmin and for them the strong damping Re(zpr2)τσ ' 13–16 is typical. In figure 5(b)
the real part of the eigenvalue for the sound-like propagating modezpr1(k) is shown. For
the smallestk-value we calculated the sound attenuation coefficient0 = 1.03×10−7 m2 s−1,
which is in a very good agreement with the value of 1.01×10−7 m2 s−1 [8], obtained from
the fit to the MD density–density time correlation function.

In figure 5(c) the dispersion of purely real eigenvalues is shown; in the hydrodynamic
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region it has to behave in the manner predicted by linear hydrodynamics:

zh(k→ 0) = DT k
2 (30)

and this mode is called the heat mode. For the smallestk-value we obtained the value
DT = 1.39×10−7 m2 s−1, which is approximately two times smaller than the experimental
value of 3×10−7 m2 s−1. In figure 5(c) another two purely real eigenvalueszdif are shown;
these exist fork < 3kmin and fork→ 0 remain finite and real, in contrast to those for the heat
mode (30). We have obtained that within the five-variables description the second purely
real mode at the smallestk-value has an eigenvalue comparable with the hydrodynamic one
(figure 5(c)), and gives a small contribution to the dynamical structure factor. This leads
to the calculated value ofDT being incorrect, and to ‘soft’ dispersion for the lowest real
eigenvalue. We enlarged the MD run up to 540 0001t to get for the smallestk-point well
converged values of the static averagesfij , but could not obtain a better agreement with
the experimental data for the coefficientDT . The results of [4, 5] display similar dispersion
for a Lennard-Jones system within the five-variables approach, and only the seven- and
nine-variables approaches show better agreement with the hydrodynamic dispersion (30).

Using (11) we calculated the Fourier transform of the longitudinal current–current time
correlation function:

CL(k, ω) = 1

π
Re

M∑
α=1

Gα
jLjL

(k)

iω + zα(k) (31)

which allowed us to compare the peak positions ofCL(k, ω) with the experimental data

[17] (figure 5(d)), and in the range ofk-values up to 0.8 Å
−1

we obtained a very good
agreement.

In comparison with those of Lennard-Jones systems [3, 5], the density–density time
correlation functions of dense metallic systems display strong oscillations for smallk-
values. To display the role of the basis set choice we compare the MD-calculated time
correlation functionsF 0

nn(k, t) andF 0
ee(k, t) with their Markovian approximations (figures

6(a)–6(d)). As is seen from figure 6(a) within the three-variables approximation (with basis
set (16)), it is not possible to reproduce the fast oscillations ofF 0

nn(k, t), while the five-
variables approximation gives much better agreement with MD results. For allk < 8kmin

we obtained that the three-variables approximation described the MD-calculatedF 0
nn(k, t)

poorly. For kmin the value of the speed of sound extracted from the eigenvalue of the
propagating mode was 820.9 m s−1, whereas the damping coefficient was nearly three
times larger than the one obtained within the five-variables approximation. Fork > 8kmin

the three-variables approximation reproducesF 0
nn(k, t) better (figure 6(b)). The MD-

calculated functionsF 0
ee(k, t) (figures 6(c), 6(d)) display over the whole range ofk-values

nonoscillating behaviour that allows one even within the three-variables approximation
to obtain a relatively good approximation for them. From the point of view of short-
time behaviour the three-variables approach retains the information about the second time
derivative at t = 0 of the density–density time correlation function, whereas the five-
variables approximation allows one to take effectively into account up to the fourth time
derivative att = 0 of F 0

nn(k, t) (the static averagesf Ljj and f L
j̇ j̇

in (21)) and the second

time derivative ofF 0
ee(k, t) (fėė in (21)). Figures 6(a)–6(d) show that the five-variables

approximation gives a considerably better agreement for short-time behaviour of Markovian
approximations with MD results than is obtained within the three-variables approximation.
For the extended basis set with second and higher time derivatives of (13) and (14), it is
possible to take into account the sixth and higher time derivatives att = 0 of F 0

nn(k, t), but
this demands large computational effort.
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We may conclude in this report that in applying the approach of generalized collective
modes without any fitting parameters to dense metallic systems, even within just the five-
variables approximation we can obtain a reasonable agreement with experiment for the
peak position ofCL(k, ω) and the thermodynamic quantities in the hydrodynamic region.
To achieve better agreement with experiment for the dispersion of generalized collective
modes for liquid Cs, calculations with the extended basis set of seven dynamical variables
are desirable.
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