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Abstract. The dynamical properties of liquid caesium near the melting point are investig-
ated within the generalized collective-modes approach in a Markovian approximation. The
generalized thermodynamic quantities and spectra of collective modes have been obtained for
the five-variables description of longitudinal fluctuations. As the basis variables, three conserved
and two nonconserved quantities have been used: the number density, longitudinal momentum,
and energy density; and the first time derivatives of the longitudinal momentum and the energy
density. All of the static and dynamic correlation functions were calculated directly from
molecular dynamics simulations for 500 particles over 165000 time steps, avoiding any fitting
parameters. A comparison with the experimental data and results of previous molecular dynamics
simulations is made.

1. Introduction

The approach of generalized collective modes [1-3] for the investigation of time correlation
functions is a modern powerful method, which allows the self-consistent description of
dynamical properties of liquids and gases in the hydrodynamic limit as well as beyond
the region of small values of the wave-vectorand frequencyw. Within this approach

the time correlation functions are obtained as the weighted sums of partial terms, each
being associated with the relevant collective excitation as expressed via the eigenvector
and eigenvalue of a generalized operator of evolution. Some generalized collective modes
correspond in the hydrodynamic limit to the usual hydrodynamic ones. It was shown [3]
that for longitudinal fluctuations the three generalized collective excitations with the lowest
eigenvalues are equal in the hydrodynamic limit to the heat mode and two sound ones.
The other collective modes with higher eigenvalues have finite damping coefficients in the
hydrodynamic region and are called the kinetic modes. The number of generalized collective
modes is determined by the number of independent dynamical variables; their time evolution
may be obtained in computer experiments, and these variables form the basis for evaluation
of the relevant time correlation functions. In [4] the seven-variables approximation has been
suggested and in [5] the extension to a nine-variables description has been made. There has
also been the first attempt to apply the approach of generalized collective modes to binary
systems. For the investigation of the fast-sound phenomenon in a binary He—Ne mixture,
Westerhuijset al [6] proposed a kinetic model within the five-variables approximation. In
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[6] all elements of the kinetic matrix for finite-values have been obtained using a procedure
involving fitting to experimental data and then extrapolating to the hydrodynamic region.

Despite its attractiveness, the collective-modes approach demands very long molecular
dynamics (MD) simulations or complicated fitting procedures [6]. Therefore, MD experi-
ments for multivariable approaches [3-5] were performed for simple model Lennard-
Jones systems. In our work we apply the approach described by Mrygladi[4] to
the investigation of collective modes in metallic Cs above the melting point. At this
thermodynamic point the dynamic properties of liquid Cs have been widely investigated
experimentally [7] and numerically using MD simulation [8-10]. Therefore, it seems to
us to be a good subject on which to test the first calculations within the collective-modes
approach applied to a dense metallic system.

This report is organized as follows. In section 2 we give a short description of the
theoretical method, and the approximations which have to be made. Section 3 contains
all of the details of the MD simulations, and section 4 is devoted to the discussion of our
results in comparison with the experimental data and previous MD-simulation results [8].

2. The theoretical method

We consider a spatially homogeneous, isotropic syste afentical classical particles of
massm in volume V. We start from the definition of the square matrix of time correlation
functions F°(k, r). Each element of this matrix is the correlation function of two basis
dynamical variables:

FO(k, 1) = (A;(k,0)A (k. 1)). (1)

Here M microscopic dynamical variableg;(k, ) form the basis sefA;(k, r)} for the
definition of theM x M square matri¥ °(k, 7).

Within the Mori—Zwanzig formalism it is straightforward to write down the generalized
Langevin equation for the matrix of time correlation functidh%(k, r) [11, 3]:

o0

0
a|:°(k, 1) —iQk)FOxk, 1) +f Mk, T)F%(k,r —1t) dr =0 (2)
0
where R (k) andM(k, ) are the frequency matrix and the matrix of the memory functions,
respectively. This matrix equation can be rewritten in terms of the Laplace transform:
[zl — iQk) + Mk, 2)]FO(k, z) = F°(k, 0) 3)

and using the Markovian approximation for the memory functivh@, z) ~ M(k, 0) we
obtain the following equation:

[zl + T()]Fp(k, z) = FOk, t = 0) (4)
where
T(k) = —iQ(k) + M(k, 0) = F(k, O)F Ofl(k, 0). (5)

Fy denotes Laplace-transformed matrix of time correlation functions in the Markovian
approximation and is the identity matrix. The following properties of time correlation
functions in the Markovian approximation are very important from the point of view of
sum rules:

/Do Fu(k,t) dr = /OOFO(k,t) dr (6)
0 0

Fy(k,t =0) = F°k,t =0). (7)
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We may diagonalize th&(k)-matrix (5):
M
Y T Xjw = 2" () Xia (8)
i=1
where X; , are the components of the-eigenvector, and® is the relevant eigenvalue.

Then equation (4) has the following solution in terms of eigenvectors and eigenvalues of
the matrixT(k):

N M G% (k)
FMk,z) = Y 9
i (k.2) ;z—kz"’(k) ©)
where
Ge (k) = Z Xia X FO (K, 0) (10)

and in the time representanon the solution has the form
Fjl (k1) = Z G (k) expl—z* (k)1). (11)

This means that each correlation functiﬁﬁ”(k, t) can be expressed as a weighted sum
of M terms with the time evolution, which is connected with the effective collective mode
with eigenvaluez® (k).

Thus, the entire problem of the time correlation function calculation is divided into
three steps: (i) choice of the basis set of dynamical variables; (i) MD simulations and
direct calculations of the static averageg(k,t = 0); and (iii) solution of equation (4) in
terms of eigenvectors of the matri k) and calculation of all dynamic and thermodynamic
properties of the system investigated.

3. Generalized collective modes within the five-variables approach

3.1. The basis set of dynamical variables

We introduce the operators for the number densitymomentum; and energyé in the
Fourier representation:

1 N
n(k = k- 12
Ak, 1) ﬁ;exm 7i (1)) (12)
R 1 &
Gk, ) = i ;mvi (1) explik - 7 (1)) (13)

1 N
e(k = k- 14
é(k, 1) ﬁ; i (1) explik - (1)) (14)

where
1 N
a0 =m@)?/2+5 > @y (15)
i,j=1 (j#i)

r;, v; denote the positions and velocities of particles, dpdr) is the two-body potential.
The operators (12)—(14) form the set of hydrodynamic microscopic variables

{Ai(k, Y™ = {ik, 1), j(k, 1), é(k, 1)) (16)
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In [3, 4] the first time derivatives of (13) and (14) have been added to the basis set of
hydrodynamic variables:

. N
Jlk, 1) = \/% ;m(ai @) +ik - vi(H)v; () explik - r; (1)) (17)
. 1 &
ek, t) = Wi ;(éi (1) + ik - vi(t)e; (1)) explik - r;(1)). (18)

In (17) a;(¢) denotes the acceleration of thd particle. Further extension of the basis set
with higher time derivatives of (13) and (14) has been suggested in [4, 5].

In our work we choose for investigation of the longitudinal fluctuations a basis set of
five variables:

~ <L .
{Ai(k, )} = {Atk, 1), 3" (k, 1), e(k, 1), 5 (k, 1), e(k, 1)} (19)

where 5L (k, 1) denotes the longitudinal component of the current operator. Taking into
account the relation

(0 (20)
t m

and properties of time correlation functions [3, 4] we can see that the 25 correlation functions
Fg(k, t) of interest are just purely real or purely imaginary. For simplicity we denote the

absolute value of")(k, s = 0) in reduced units ag;;. In the static limit the number of
different nonzero correlation functions is reduced to seven averages. In our caseg the 5
Hermitian matrix of static correlation functios(k, r = 0) has the form
ﬁll1 O fne _lk 13‘ O
0 f,f 0 0 —i f]i
Fo(k) = fne 0 fee _Ifjl; 0 . (21)
H L i £L L
|kfjj . 0 i fje fjj 0
0 'ije 0 0 fee
) Similarly, taking into account the properties of time correlation functions (see [3, 4]),
FO(k, z = 0) may be written as

Thn f;m (I/k)fnn Tnefne 0 fne
(/Kk) fan 0 (/K fee f5 0

FOk) = | Tnfue (/KD fae Teefee O fe (22)
0 —fL 0 0 ift
_fne 0 _fee |ij; 0
where
l o0
(k) = FO(k,t) dr 23
e F,»‘}(k,0>fo gD @)

are the hydrodynamic correlation times.

We have to emphasize that the theoretical approach described above does not contain
any fitting parameter. Just the Markovian approximation is made to obtain equation (4).
The applications of this method [4, 5] showed very reasonable results for the dynamical
properties of the model Lennard-Jones system.
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Figure 1. The pair distribution functiorg(r) and the reduced potentidl* = ®;; /kpT.

3.2. Molecular dynamics simulations

We performed MD simulations for liquid Cs with the mass density 18321 kg ni2 at

the temperature 308 K using a system of 500 particles interacting through the oscillating
potential ®;; () at the constant volum& = L3. The effective two-body potential was
obtained from pseudopotential theory using a simple Ashcroft empty-core pseudopotential
[12] with the parameter, = 2.72 au, and for the local-field correction the parametrization
of Ichimaru and Utsumi [13] was used. The potential was calculated in tabular form on
a grid with a mesh size of.04 A. In order to take into account the Friedel oscillations,
the cut-off radiusr was chosen to be 1B A, in the vicinity of the sixth node. This

kind of interatomic potential gives for the static and dynamic properties of liquid Cs a
good agreement with experimental data [8]. The reduced interatomic potential is shown in
figure 1.

The equations of motion were integrated by means of a fourth-order predictor—corrector
Gear algorithm with a time increment @z = 8 x 1071 s. The initial configuration of
particles was the face-centred cubic lattice, and their initial velocities were randomly put
into a Maxwellian distribution. The melting of the initial configuration and the subsequent
thermalizing were performed in 13500 time steps. The observation time in the equilibrium
state of the system was 1320 ps (165 000 time steps) except for the srhalldae, where
it was enlarged to 4320 ps (540000 time steps). The energy conservation for the whole
MD run was to within less than.02%, due to the small value &, the small grid size of
the tabulated potential, and the sophisticated integration method. Every sixth configuration
was taken into account in the computation of the static equilibrium averages. The time
correlation functions were calculated by shifting the time origing,(= 6 Ar) on the
grid of 512 points in steps of &¢. Additional averaging of the correlation functions was
performed over allN, possible vectorsk (with |k| = k) which are commensurate with
the reciprocal lattice of the MD box due to periodic boundary condition. We restricted the
k-region by imposing the upper boundi}g,, wherekmin = 27 /L was the smallest possible

k-value of 016029A *.
With the help of directly calculated static correlation functions we can obtairkthe
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Figure 2. Static correlation functions. (a) Density—density. Full line—the Fourier transform
of the pair correlation function; open circles—experimental data [7]; full circles—directly MD-
calculated values; asterisk/at= 0—the value from the isothermal compressibility [14]. (b) The
static correlator between complex conjugate basis variables (17). Boxes—directly MD-calculated
values; full line—the fourth moment of the dynamical structure factor divided?y

dependence of the generalized thermodynamic quantities using the expressions [3, 16]

— - L

W) = o o (24)
— 1 2

Cvik) = e = [0 fun (] (25)

1
a(k)T = ﬁ[h(k)fnn(k) = Jne(®)] (26)
B
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Figure 3. Generalized thermodynamic quantities for liquid C§'at 308 K: (a) the generalized
enthalpy per particle; (b) the generalized linear-expansion coefficient; (c) the generalized specific
heat at constant volume per particle; (d) the generalized ratio of specific heats. AstériskOat

in (b)—(d)—experimental values; that in (a)—the calculated value (28). Dotted lines—the spline
interpolation.

Cp(k)

— 2.2
ol Cp(k) = Cy (k) + kpT a”(k)/ fan (k) (27)

y (k) =

where kg denotes the Boltzmann constantk) is the generalized enthalpy per patrticle,
a(k) is the generalized thermal linear-expansion coefficient,@néndCp are generalized
specific heats at constant volume and constant pressure per particle, respectively.
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Figure 4. Inverse hydrodynamic correlation times as functions of the wave-vector: diamonds—
density—density; triangles—density—energy; boxes—energy—energy. Dotted lines—the spline
interpolation.

4. Results and discussion

We calculated the static structure factor (figure 2(a)) in two ways: (i) directly from
the definition as the equilibrium averag,; and (ii) via Fourier transformation of the
pair correlation function (figure 1). In both cases the values obtained give a good
agreement with the experimental data [7] and previous MD simulations [8, 9]. The value
S(k = 0) = 0.023 23, obtained from the isothermal compressibility [14], is also in good
agreement with the extrapolated theoretical val§¢ls). To check the reliability of the
calculated static averages we compared the relefarit= j~, j* with the second(w?) (k))
and fourth moments$(w*)(k)) of the coherent dynamical structure factor [15]. The values
fﬁ (k) within the numerical accuracy of 1% were equal to the square of the thermal velocity
kzgT/m = (w?)/k?. The comparison of the directly caIcuIatg‘% (k) and (w*)/k?, which
are shown in figure 2(b), seems to be very satisfactory. We would like to emphasize that
all matrix elements in (21) and (22) were calculated directly from MD simulation avoiding
any fitting parameters and numerical derivatives for time correlation functions.

In figures 3(a)-3(d) the generalized thermodynamic quantities (24)—(27) are shown. All
curves display nonmonotonic behaviour in the regi01135—1.45,&_l which corresponds
to the position of the main peak of the static structure factor. The asterisk=ad for the
generalized enthalpy per particle (figure 3(a)) denotes the calculated value [16]:

h(k=0=e+ p/n

2rn? [T dd;(r) 4 (28)
where e is the average energy per particle, calculated during the MD ez’ =
—3.467 27), andp, g(r), andn are the pressure, the pair distribution function, and the
numerical density, respectively. The integral in (28) has been calculated without long-range

corrections. The upper limit, has been taken because the poterdjalr) beyond the cut-
off radius was assumed to be equal to zero. In figures 3(b) and 3(c) asterisks@tenote

p=kgTn—
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Figure 5. The dispersion of the generalized collective modes. (a) The imaginary part of the
eigenvalues for propagating modes. Dotted line—linear dispersion with the experimental value of
the speed of sound [14]. (b) The real part of the eigenvalue of the sound-like mode. (c) Purely
real eigenvalues. Dotted line—the heat mode (30) with the experimental valig diL4].

(d) The peak position of'; (k, w). Triangles—experimental data [17]; full circles—calculated
values.

experimental values. For these generalized thermodynamic quantities we may extrapolate
theoretical curves well to the points that show experimental vakes:28.92x 1075 K1,
y = 1102, Cy = 0.214 J g K! [14]. The specific heaCy, has been determined also
via the temperature fluctuations [11] during the MD run. The valye= 0.225 J g K!
obtained is in a reasonable agreement with the experimental data and the extrapolated value
of Cy(k — 0).

The k-dependences of the inverse hydrodynamic correlation times (23) in terms of the
time-scaler, = (m/kgT)Y?/kmin are presented in figure 4. The curves display behaviour
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Figure 6. Time correlation functions: density—density ((a), (b)) and energy—energy ((c), (d)),
for two values ofk. Open circles—MD-calculated time correlation functions; dotted lines—
Markovian approximations (11) within the three-variables basis (16); full lines—Markovian
approximations within the five-variables basis (19).

with a minimum in thek-region of the main peak of the static structure factor that is similar
to the results obtained in [4, 5] for a model Lennard-Jones liquid.

Within the five-variables approach we obtained five generalized collective modes. At
small k-values up to Ry, there exist two propagating modes with complex conjugate
eigenvalues and three diffusive ones with purely real eigenvattie3his is in agreement
with the five-modes results for Lennard-Jones fluids [3, 4], where also just two propagating
modes in the region of small wave-vectors have been obtained. These propagating modes
display dispersion which is typical of the sound excitations, and in the hydrodynamic region
the dependence dnof the imaginary part becomes a linear function with a coefficient that
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Figure 6. (Continued)

has the meaning of the adiabatic speed of sound:
75k — 0) = Tk2 £iCk. (29)

In figure 5(a) the linear dispersion with the experimental value of the adiabatic speed of
sound [14] is shown. Our results give the linear coeffici€nt 1180 m s'—that is,~20%
larger than the experimental value. The dispersions of the imaginary parts of the propagating
modes are shown in figure 5(a). The nonhydrodynamic propagating modes appear for
k > 2kmin and for them the strong damping @¢?)z, ~ 13-16 is typical. In figure 5(b)
the real part of the eigenvalue for the sound-like propagating nédek) is shown. For
the smallest-value we calculated the sound attenuation coeffidieat 1.03x 10" m? s,
which is in a very good agreement with the value dillx 10-7 m? s~1 [8], obtained from
the fit to the MD density—density time correlation function.

In figure 5(c) the dispersion of purely real eigenvalues is shown; in the hydrodynamic
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region it has to behave in the manner predicted by linear hydrodynamics:
Z"(k - 0) = Drk? (30)

and this mode is called the heat mode. For the smallagtlue we obtained the value
Dy = 1.39x 107 m? s~1, which is approximately two times smaller than the experimental
value of 3x 10-7 m? s~1. In figure 5(c) another two purely real eigenvaluéé are shown;
these exist fok < 3kmin and fork — 0 remain finite and real, in contrast to those for the heat
mode (30). We have obtained that within the five-variables description the second purely
real mode at the smallektvalue has an eigenvalue comparable with the hydrodynamic one
(figure 5(c)), and gives a small contribution to the dynamical structure factor. This leads
to the calculated value ab; being incorrect, and to ‘soft’ dispersion for the lowest real
eigenvalue. We enlarged the MD run up to 540 @600 get for the smallest-point well
converged values of the static averaggs but could not obtain a better agreement with
the experimental data for the coefficiegb. The results of [4, 5] display similar dispersion
for a Lennard-Jones system within the five-variables approach, and only the seven- and
nine-variables approaches show better agreement with the hydrodynamic dispersion (30).
Using (11) we calculated the Fourier transform of the longitudinal current—current time
correlation function:

Y (k)
CLk, w) = —R leﬂa(k) (31)

which allowed us to compare the peak positions(pfik, w) with the experimental data

[17] (figure 5(d)), and in the range df-values up to B A" we obtained a very good
agreement.

In comparison with those of Lennard-Jones systems [3, 5], the density—density time
correlation functions of dense metallic systems display strong oscillations for &mall
values. To display the role of the basis set choice we compare the MD-calculated time
correlation functionsF? (k, t) and F2 (k, t) with their Markovian approximations (figures
6(a)—-6(d)). As is seen from figure 6(a) within the three-variables approximation (with basis
set (16)), it is not possible to reproduce the fast oscillationg$fx, 1), while the five-
variables approximation gives much better agreement with MD results. Fér-alBkmn
we obtained that the three-variables approximation described the MD-calcugtéd 1)
poorly. Forkmin the value of the speed of sound extracted from the eigenvalue of the
propagating mode was 820.9 nr's whereas the damping coefficient was nearly three
times larger than the one obtained within the five-variables approximationk BoBknin
the three-variables approximation reprodude$ (k,:) better (figure 6(b)). The MD-
calculated functions?? (k, 1) (figures 6(c), 6(d)) display over the whole rangeke¥alues
nonoscillating behawour that allows one even within the three-variables approximation
to obtain a relatively good approximation for them. From the point of view of short-
time behaviour the three-variables approach retains the information about the second time
derivative atr = 0 of the density—density time correlation function, whereas the five-
variables approximation allows one to take effectively into account up to the fourth time
derivative atr = 0 of F? (k, 1) (the static average$L and fL in (21)) and the second

time derivative of FO(k, 1) (f:; in (21)). Figures 6(a)—6(d) show that the five-variables
approximation gives a considerably better agreement for short-time behaviour of Markovian
approximations with MD results than is obtained within the three-variables approximation.
For the extended basis set with second and higher time derivatives of (13) and (14), it is
possible to take into account the sixth and higher time derivatives=ad of F° (k, 1), but

this demands large computational effort.
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We may conclude in this report that in applying the approach of generalized collective
modes without any fitting parameters to dense metallic systems, even within just the five-
variables approximation we can obtain a reasonable agreement with experiment for the
peak position ofC; (k, w) and the thermodynamic quantities in the hydrodynamic region.
To achieve better agreement with experiment for the dispersion of generalized collective
modes for liquid Cs, calculations with the extended basis set of seven dynamical variables
are desirable.
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